skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Arctic permafrost is facing significant changes due to global climate change. As these regions are largely inaccessible, remote sensing plays a crucial rule in better understanding the underlying processes across the Arctic. In this study, we focus on the remote detection of retrogressive thaw slumps (RTSs), a permafrost disturbance comparable to slow landslides. For such remote sensing tasks, deep learning has become an indispensable tool, but limited labeled training data remains a challenge for training accurate models. We present PixelDINO, a semi-supervised learning approach, to improve model generalization across the Arctic with a limited number of labels. PixelDINO leverages unlabeled data by training the model to define its own segmentation categories (pseudoclasses), promoting consistent structural learning across strong data augmentations. This allows the model to extract structural information from unlabeled data, supplementing the learning from labeled data. PixelDINO surpasses both supervised baselines and existing semi-supervised methods, achieving average intersection-over-union (IoU) of 30.2 and 39.5 on the two evaluation sets, representing significant improvements of 13% and 21%, respectively, over the strongest existing models. This highlights the potential for training robust models that generalize well to regions that were not included in the training data. 
    more » « less
  3. Free, publicly-accessible full text available November 4, 2025
  4. Surrogate models have shown improved accuracy in predicting infrastructure responses during dynamic loadings. However, training a surrogate model for complex loading inputs across the entire hazard region remains challenging. This study provides insight into the training of surrogate models to estimate the responses of transmission tower-line structures in a coupled high-dimensional and high-resolution wind field and presents innovative methods for addressing these challenges. Four data- and physics-based spatial-temporal decoupling sampling methods are employed and cross-compared to obtain the most representative in-event wind profiles for training the surrogate model. Long Short-Term Memory (LSTM) is utilised as the surrogate model framework to predict the dynamic responses of the structure during the 2017 Hurricane Harvey. The accuracy and robustness of two transmission tower-line structure configuration surrogate models are validated by comparing the predictions with finite element analyses by using randomly distributed temporal and geospatial wind profiles throughout the hurricane. Finally, a single LSTM surrogate model is developed, trained by applying the full reference wind speed range of Hurricane Harvey for the regional-scale structural performance evaluation of the transmission tower-line system. The results demonstrate that the proposed surrogate model training methodology is general and can be applied to regional-scale structural performance evaluations. 
    more » « less
  5. We present a graph-theory-based reformulation of all ONIOM-based molecular fragmentation methods. We discuss applications to (a) accurate post-Hartree–Fock AIMD that can be conducted at DFT cost for medium-sized systems, (b) hybrid DFT condensed-phase studies at the cost of pure density functionals, (c) reduced cost on-the-fly large basis gas-phase AIMD and condensed-phase studies, (d) post-Hartree–Fock-level potential surfaces at DFT cost to obtain quantum nuclear effects, and (e) novel transfer machine learning protocols derived from these measures. Additionally, in previous work, the unifying strategy discussed here has been used to construct new quantum computing algorithms. Thus, we conclude that this reformulation is robust and accurate. 
    more » « less